Indian Statistical Institute Mid-Semestral Examination Algebra II - BMath I

Max Marks: 30 Time: 150 minutes.

Answer all questions. You may use Theorems stated/proved in the class after correctly stating them. You may use results not discussed in the class only after proving them.

- (1) Decide whether the following statements are TRUE or FALSE. Answers that are not accompanied by a correct justification will not be awarded any marks.
 - (a) There exists a 4×3 real matrix A and a 3×4 real matrix B such that the column vectors of AB are linearly independent.
 - (b) If V is a vector space of dimension 8 and $T: V \longrightarrow V$ a linear transformation such that $T \circ T = 0$, then $\operatorname{rank}(T) \leq 4$.
 - (c) Suppose A and B are 2×2 real matrices such that $AX \neq BX$ for all non-zero X. Then A B is invertible.
 - (d) Let $A = (a_{ij})$ be a square matrix with real entries such that $\sum_j a_{ij} = 1$ for all i. Then there exists a non zero X such that AX = X.
 - (e) If V is a vector space over a field F and $W \neq \{0\}$ a subspace such that $V/W \cong V$ then V is infinite dimensional. $[2 \times 5 = 10]$
- (2) (a) Show that the system AX = B where $B = (1, 2, 3)^t$ and

$$A = \left(\begin{array}{rrrr} 1 & -1 & 1 & 2 \\ 1 & 1 & -1 & 1 \\ 1 & 7 & -5 & -1 \end{array}\right)$$

has no solutions. [5]
(b) Prove that a square matrix A is invertible if and only if its columns are linearly inde-

pendent. [5]

- (3) (a) Consider the vector space $V = \mathbb{R}$ over the field \mathbb{Q} of rational numbers. Exhibit explicitly a linearly independent set $L = (v_1, v_2, v_3)$ of vectors in V.
 - (b) Let V be the vector space of all polynomials with real coefficients of degree at most 2. Let t be a fixed real number and define $p_1(x) = 1$, $p_2(x) = x + t$ and $p_3(x) = (x + t)^2$. Prove that $B = (p_1, p_2, p_3)$ is a basis of V. If $p(x) = a_0 + a_1x + a_2x^2$, what are the coordinates of p in the ordered basis B?